A Polarimetric First-Order Model of Soil Moisture Effects on the DInSAR Coherence

نویسندگان

  • Simon Zwieback
  • Scott Hensley
  • Irena Hajnsek
چکیده

Changes in soil moisture between two radar acquisitions can impact the observed coherence in differential interferometry: both coherence magnitude |γ| and phase φ are affected. The influence on the latter potentially biases the estimation of deformations. These effects have been found to be variable in magnitude and sign, as well as dependent on polarization, as opposed to predictions by existing models. Such diversity can be explained when the soil is modelled as a half-space with spatially varying dielectric properties and a rough interface. The first-order perturbative solution achieves–upon calibration with airborne L band data–median correlations ρ at HH polarization of 0.77 for the phase φ, of 0.50 for |γ|, and for the phase triplets Ξ of 0.56. The predictions are sensitive to the choice of dielectric mixing model, in particular the absorptive properties; the differences between the mixing models are found to be partially compensatable by varying the relative importance of surface and volume scattering. However, for half of the agricultural fields the Hallikainen mixing model cannot reproduce the observed sensitivities of the phase to soil moisture. In addition, the first-order expansion does not predict any impact on the HV coherence, which is however empirically found to display similar sensitivities to soil moisture as the co-pol channels HH and VV. These results indicate that the first-order solution, while not able to reproduce all observed phenomena, can capture some of the more salient patterns of the effect of Remote Sens. 2015, 7 7572 soil moisture changes on the HH and VV DInSAR signals. Hence it may prove useful in separating the deformations from the moisture signals, thus yielding improved displacement estimates or new ways for inferring soil moisture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of soil moisture change effects on L-band DInSAR phase

The Differential Synthetic Aperture Radar Interferometry (DInSAR) technique is recognized as a potential remote sensing tool for detecting ground surface displacements with less than a centimetre accuracy. The surface soil moisture changes ( 1clip_image001.png" > ) during the time between the two images as an effective parameter on interferometry phase 1clip_image002.png" > ), leads to incorrec...

متن کامل

Suitability of Different Observables and Polarizations for Dinsar-based Soil Moisture Estimation

The mapping of soil moisture at field scales can potentially be achieved by the remote sensing technique differential interferometry, or DInSAR. Its signals have been shown to be sensitive to soil moisture changes. We analyse the suitability for this task of three DInSAR observables: the phase φ, the coherence |γ| and the phase triplets Ξ. By inverting an electromagnetic scattering model, we ob...

متن کامل

Modified Scattering Decomposition for Soil Moisture Estimation from Polarimetric X-band Data

In this paper, the potential of estimating soil moisture from fully polarimetric X-band SAR data is investigated for the first time. Due to the short wavelength, the Physical Optics model [1] has been chosen for the scattering process representation and a model-based decomposition approach has been used to exploit the polarimetric observable space. For appropriate modelling of the strong cross-...

متن کامل

Electromagnetic scattering from short branching vegetation

A polarimetric coherent electromagnetic scattering model for short branching vegetation is developed in this paper. With the realistic structures that reasonably describe the relative positions of the particles, this model is able to consider the coherent effect due to the phase difference between the scattered fields from different particles, and account for the second-order, near-field intera...

متن کامل

Evaluation of Simplified Polarimetric Decomposition for Soil Moisture Retrieval over Vegetated Agricultural Fields

This paper investigates a simplified polarimetric decomposition for soil moisture retrieval over agricultural fields. In order to overcome the coherent superposition of the backscattering contributions from vegetation and underlying soils, a simplification of an existing polarimetric decomposition is proposed in this study. It aims to retrieve the soil moisture by using only the surface scatter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015